The MAA is a visionary master program with an innovative and open structure, mixing diverse disciplines, shaping professionals capable of producing theoretical & practical solutions towards responsive cities, architecture & technology.


CrystalVerse

Crystallization is a process responsible for the formation of solid structures, wherein constituent atoms or molecules are systematically arranged into a highly organized lattice, constituting a crystal.  This phenomenon can occur through various mechanisms, including precipitation from a supersaturated solution, solidification from a liquid state, and, less commonly, direct sublimation from a gaseous phase. The characteristics … Read more

Fractalization of Tree Branching

Fractals are commonly found within nature. They are self-similar structures, where one aspect of the fractal is identical to the rest. This allows it to be scaled up or down while fitting within itself. Within trees, fractalization is found in the way the branches are grown from each other, always yielding smaller and smaller versions … Read more

BRANCHING BEYOND

L-SYSTEMS IN ARBOREAL FRACTALS FRACTAL GROWTH This project explores the application of Lindenmayer systems (L-systems) for fractal growth simulation within the Grasshopper environment. L-systems provide a powerful framework for modeling complex branching structures observed in nature, such as trees, plants, and coral reefs. Leveraging Grasshopper’s computational design capabilities, we investigate the dynamic generation of fractal … Read more

Studies on Fractal Growth – Computational Desing II

The term “fractal” was coined by the mathematician Benoît Mandelbrot in 1975. Mandelbrot based it on the Latin fr?ctus, meaning “broken” or “fractured”, and used it to extend the concept of theoretical fractional dimensions to geometric patterns in nature In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually … Read more