The Master in Robotics and Advanced Construction (MRAC) seeks to train a new generation of interdisciplinary professionals who are capable of facing our growing need for a more sustainable and optimised construction ecosystem. The Master is focused on the emerging design and market opportunities arising from novel robotic and advanced manufacturing systems.

Through a mixture of seminars, workshops, and studio projects, the master programme challenges the traditional processes in the Construction Sector. It investigates how advances in robotics and digital fabrication tools change the way we build and develop processes and design tools for such new production methods.


Filters

Robotic Strategies in Construction

Computational Design for Digital and Robotic Fabrication Introduction The Software I module served as our introduction to understanding how designs produced on the computer translate into fabrication strategies that can be used by a robotic arms in various ways. The seminar was broken up into four exercises, each exercise involved a specific robotic operation and … Read more

Designing Dynamic Forms – Robotic Fabrication Techniques

Team member(s):zeyu chao, Elizabeth.frias.martinez,Chi.Lee 3Dprint pavilion Introduction This project explores the large-scale robotic clay printing of a pavilion, with the geometry divided into four equal segments. The chosen geometry, Segment 1, was further developed into modular units to optimize the construction process. The modular approach allows for efficient fabrication and assembly, enhancing the structural and … Read more

3D printed pavilion – CNC Milling wave wall

1 | Introduction and Geometry selection This exercise is based on large-scale geometry to be printed in clay. It is divided into 6 equal segments. After running many tests, we realized that the 90 degrees joinery in the model was very complex to work with (in the creation of the inner and outer shell), and … Read more

Computational Design Strategies for Robotic Fabrication

thumbnail

The Software-I seminar introduces computational design strategies for robotic fabrication, focusing on the software aspects of these processes. The following exercises cover different manufacturing strategies that translate digital models into buildable forms through precise toolpath development and simulation. These include an end-to-end process from conceptual design to the generation of fabrication files for robotic systems, … Read more