The Master Programme in Robotics and Advanced Construction is an innovative educational format that offers interdisciplinary skills and understanding through a series of class seminars that are put into practice through hands-on workshops. IAAC gives students the opportunity to create individual studio agendas and develop Pilot Thesis Projects based on the knowledge acquired during the seminars and workshops split into 3 Modules. In this way, IAAC puts together an experimental learning environment for the training of professionals with both theoretical and practical responses to the increasing complexity of the construction sector.

Advanced Fabrication for Circular Materials

The construction industry has long been a major contributor to global resource consumption and waste production. In response to these challenges, circularity in construction has emerged as a transformative approach aimed at reducing environmental impacts, conserving resources, and promoting sustainability. This blog explores the core parameters of circularity in construction—materials, design, and energy consumption—and provides … Read more

An Analysis of The Triple Bottom Line in Advanced Manufacturing of Non-standardized Materials

Process Defined “Advanced Manufacturing for Non-Standardized Materials” refers to the use of innovative manufacturing techniques to work with materials that do not conform to conventional standards or specifications.” Advanced Manufacturing: This encompasses cutting-edge technologies and methods, such as automation, robotics, 3D printing, and computer-aided design (CAD), which enhance efficiency, precision, and flexibility in the manufacturing … Read more

Robotic Craft Interaction

An Intersectional Investigation Robotics is the field of study focused on the research and application of robotic systems. This definition, however, doesn’t provide much insight. So, what is a robot? Robots are machines that can operate autonomously or through programmed input to perform specific tasks, often replacing human effort. These tasks are typically complex and … Read more

Scanning for Building Innovation

From capturing intricate geometries to enhancing processes, our research emphasizes in innovation in construction and data optimization, showcasing the transformative potential of advanced scanning tools. These technologies not only enhance our ability to capture the intricacies of physical structures but also provide actionable insights for a variety of applications. Research Topics 1. Fabrication OptimizationWe leveraged … Read more

BANDY2_2.0_Willow weaving

1 | INTRODUCTION What is willow weaving and why do it with a robot? Willow weaving as a robotic operation needs to be understood in context. Our archaeological records date bake basket weaving back over 14000 years, older than pottery. An ancient craft that is practiced today in virtually the same way that it has … Read more

ROBOT-ASSISTED WEAVING + RAW MATERIALS / MRAC Workshop 1.2

Team member(s): Govind Chithrath, Santosh Shenbagamoorthy, Krystyn Kontos  , Aleksandra Kraeva and Lauren DemingModified by Lauren Deming on November 24, 2024 Ultimately, the goal is to develop more efficient means for harvesting and utilizing low-carbon footprint alternatives for construction. Course Objective Project Abstract Autonomous Weaving with Raw Materials explores the intersection between weaving automation and the use of raw materials. After analyzing … Read more

Weaving Natural Materials – Breathing Curtain Wall

Introduction As part of the workshop led by Javier Fuentes and Moritz Dörstelmann the Chair of Digital Design and Fabrication (DDF) at the Karlsruhe Institute for Technology (KIT), our team explored the potential of willow as an innovative material in architecture. This project merges sustainability, advanced design, and robotic technology to develop breathable and adaptive … Read more

Paint Bubble End Effector

The Hardware-I seminar explores different hardware tools for the purpose of making a custom end effector to be mounted on the robot flange. The objective of this end effector is to spill paint on a canvas. In our project, we aimed to control and precisely calibrate the smallest splash of paint possible by exploring one … Read more

Pressurized Balloon Spill Tool

Practical Introduction to Electronics (MRAC Hardware 01) Github: MRAC-IAAC/balloongun Objectives. The Hardware Module 1 is intended to give an overview of the state of the art in robotic actuation, discussing the practical implementation of such actuators, and brainstorm how these actuators and the robotic arms could bring new levels of versatility, agility and efficiency to … Read more

Hardware I End Effector: VibeInk.2000

1 | Impetus 2 | Concept The underlying phenomena that inspired the project were acoustic standing waves and cantilever vibrations. These principles represent the intricate interplay of physics in shaping patterns and movements in materials, serving as the foundation for the development of the device. By harnessing these phenomena, our project aims to explore novel … Read more

FLOWPRESS – Creating Patterns with Parameters

Introduction This seminar invites students to explore making custom made spillers controlled by Arduino and a 6-axes robotic arm in order to paint spills on canvas with black acrylic paint. Context   Recently we have clearly observed immense changes in production, prototyping, and innovation that has been influenced by open source software, firmware and hardware. Human … Read more

Cork ReForm

Bio-Additive Manufacturing with Cork Topology optimisation – Arriving at an absolute   Topology optimization is a shape optimization method that uses algorithmic models to optimize material layout within a user-defined space for a given set of loads, conditions, and constraints  Topology optimisation maximizes the performance and efficiency of the design by removing redundant material from areas … Read more

BIO-ADDITIVE MANUFACTURING / MRAC Workshop 1.1

Cork-based 3d printing – Topological Optimisation Design Introduction    The seminar invites students to explore new materials, additive processes and new fields of applications through robotic 3d printing taking advantage of the potential of the 6-axes of the robotic arm. Context   Recently we have clearly observed immense changes in architectural design development. Architecture has been influenced … Read more

BANDY2 _ Cork – based 3d printing: Non-Planar Additive Manufacturing

Testing the potential of cork as a construction material through non-planar 3D printing of computationally generated branching structures. INTRODUCTION Our investigation takes place against the backdrop of rapidly growing trends towards computational design tools and advanced construction methodologies. This investigation forms part of a 1 week workshop which focusses on additive manufacturing of biomaterials. In … Read more

Robotic Strategies in Construction

Computational Design for Digital and Robotic Fabrication Introduction The Software I module served as our introduction to understanding how designs produced on the computer translate into fabrication strategies that can be used by a robotic arms in various ways. The seminar was broken up into four exercises, each exercise involved a specific robotic operation and … Read more

Designing Dynamic Forms – Robotic Fabrication Techniques

Team member(s):zeyu chao, Elizabeth.frias.martinez,Chi.Lee 3Dprint pavilion Introduction This project explores the large-scale robotic clay printing of a pavilion, with the geometry divided into four equal segments. The chosen geometry, Segment 1, was further developed into modular units to optimize the construction process. The modular approach allows for efficient fabrication and assembly, enhancing the structural and … Read more

3D printed pavilion – CNC Milling wave wall

1 | Introduction and Geometry selection This exercise is based on large-scale geometry to be printed in clay. It is divided into 6 equal segments. After running many tests, we realized that the 90 degrees joinery in the model was very complex to work with (in the creation of the inner and outer shell), and … Read more

Computational Design Strategies for Robotic Fabrication

thumbnail

The Software-I seminar introduces computational design strategies for robotic fabrication, focusing on the software aspects of these processes. The following exercises cover different manufacturing strategies that translate digital models into buildable forms through precise toolpath development and simulation. These include an end-to-end process from conceptual design to the generation of fabrication files for robotic systems, … Read more