The Master in Robotics and Advanced Construction (MRAC) seeks to train a new generation of interdisciplinary professionals who are capable of facing our growing need for a more sustainable and optimised construction ecosystem. The Master is focused on the emerging design and market opportunities arising from novel robotic and advanced manufacturing systems.

Through a mixture of seminars, workshops, and studio projects, the master programme challenges the traditional processes in the Construction Sector. It investigates how advances in robotics and digital fabrication tools change the way we build and develop processes and design tools for such new production methods.


Filters
Course

Biomorphic Stacking

This project explores the computational logic and thinking to design an iterative growth algorithm that enforces specific filters and rules of selection to inform the assemblage of simple building blocks.In Grasshopper the Anemone plug-in is used as the tool to iterate over the computational logic, informing how the geometry will behave within the digital environment … Read more

Computational Logic for Iterative Processes

The introductory software course emphasizes computational logic, focusing on the assembly and growth processes in design, navigated meticulously by grasshopper algorithms. Voxels are introduced as fundamental units, which, when combined and altered, form a complex system of geometric structures. Using plugins like Anemone which allow loops to occur we are easily able to create permutations … Read more

Iterative Growth Assemblages

In Software I, we explored computational logic with a focus on iterative processes. Using voxels (short for volume elements), we created collections of geometric elements using the Grasshopper and Anemone plugins. The goal of the seminar was to gain a deeper understanding of iterative processes and computational logic. Specifically, we focused on creating voxel-based shapes … Read more

Repella-tractor

Repella-tractor

This project revolved around utilising computational thinking and logical principles for crafting assembly and growth processes. This exploration involved using iterative algorithmic approaches, commencing with essential spatial building components. We have designed a few essential components in the form of voxels that served as fundamental computational units, having the capability to both store and process … Read more

Computational Logic for Generative Design

The project focuses on generative assemblies comprised of multiple identical modules. It is crucial to design the shape of the components and the connection points between each of them, as well as not to add occlusions. Components will grow randomly depending on the shape as well as the location of the connection points. The design … Read more