The MAA is a visionary master program with an innovative and open structure, mixing diverse disciplines, shaping professionals capable of producing theoretical & practical solutions towards responsive cities, architecture & technology.


Filters
Course

BRANCHING BEYOND

L-SYSTEMS IN ARBOREAL FRACTALS FRACTAL GROWTH This project explores the application of Lindenmayer systems (L-systems) for fractal growth simulation within the Grasshopper environment. L-systems provide a powerful framework for modeling complex branching structures observed in nature, such as trees, plants, and coral reefs. Leveraging Grasshopper’s computational design capabilities, we investigate the dynamic generation of fractal … Read more

Spider Web Spinning

The Spider Web Spinning Project seeks to digitally replicate the intricate process of spider web construction. By delving deep into the anatomy, behavior, and environmental conditions influencing web formation, this project aims to unravel the secrets behind nature’s engineering marvel. Spider web formation, known as “web spinning,” is a remarkable feat of engineering mastered by … Read more

MYCELIUM NETWORKS

Abstract Computational Approach to Understanding Growth of Mycelium INTRODUCTION LIFE PROCESS UNDERSTANDING GROWTH UNDERSTANDING PARAMETERS OF INFLUENCE DECONSTRUCTING THE PHENOMENON SINGLE BRANCHING SYSTEM – APPROACH 01 PERFORMANCE SINGLE BRANCHING SYSTEM _SHORTEST WALK Within an environment mimicking soil conditions, the organism’s spore point discerns optimal targets such as moisture, nutrients, light, and temperature.  Through this sensory … Read more

Tensile Structure

Reproduce parametrically Nature’s Behaviors Introduction This project delves into the parametric design of tensile structures, inspired by nature’s efficiency and adaptability. Through Grasshopper, we investigate factors like load, scale, segment count, multiplication, perforations, and vertical member adjustability to optimize tensile structures’ performance. We simulate structures under various loads and considering gravity. By fine-tuning parameters, such … Read more

Golden Gusts

What is the Golden Ratio? The Golden Ratio is a relationship between two numbers that are next to each other in the Fibonacci sequence. When you divide the larger one by the smaller one, the answer is something close to Phi. The further you go along the Fibonacci Sequence, the closer the answers get to … Read more

CORAL ECOSYSTEM

circulatory system Chemical Equation Flow & Diffusion(Peclet number formula) Flow Simulation Coral Section Diffusion Simulation Growth Monitor wave Simulation Influence of Waves others Influence factors(Next step) The survival of corals is currently influenced and challenged by various factors, leading to the gradual disappearance of this ancient ecosystem. In order to simulate both favorable and adverse … Read more

Studies on Fractal Growth – Computational Desing II

The term “fractal” was coined by the mathematician Benoît Mandelbrot in 1975. Mandelbrot based it on the Latin fr?ctus, meaning “broken” or “fractured”, and used it to extend the concept of theoretical fractional dimensions to geometric patterns in nature In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually … Read more

Reef Rhythm: Differential Growth in the dance of Reaction Diffusion

This project explores the differential growth under the reaction diffusion phenomena. Moving from the microscopic behavior of magnetic fluids to the macroscopic phenomenon of differential growth, revealing the interconnectedness of physical processes and biological phenomena. Beginning with an exploration of the properties and behaviors of magnetic fluids, and establishing an understanding of their unique dynamics. … Read more

Computational Design II – Molecular Crystallization

This project is about the intricacies and process induced intelligence int the natural phenomenon of crystallization. Namely on the molecular level. This project explores the nature and structure of crystal lattices and how the number of bonds and the allowance of joining planes influences the overall molecular structure. Iterative Bonding- X OR Y Plane – … Read more

CELL DIVISION

Pluripotent (‘capable of multiple tasks‘) stem cells are cells that can divide indefinitely.  These cell layers are the fundamental tissues that give rise to all the different types of cells and tissues found in the adult organism.  Given this property, stem cells are potentially able to recreate any tissue or organ found in the body.  … Read more

Differential growth of brain coral

This project aims to investigate the pattern and growth behavior of brain coral, showcasing its fascinating interaction with the environment through its unique patterns and colors. The study utilizes scripting in Grasshopper to optimize and replicate the coral’s behavior, mirroring its life influences. Starting with the brain coral life cycle, its differential growth algorithm could … Read more

ICE CRYSTALS _Snowflakes

P r o j e c t A b s t r a c t : This project investigates the formation and growth of ice crystals, snowflakes. Initially, the theoretical background was explored to understand the properties, characteristics, and reasons behind snowflake formation. Using this knowledge, visual and computational designs were developed to illustrate a … Read more