The MaCAD is a unique online programme training a new generation of architects, engineers and designers ready to develop skills into the latest softwares, computational tools, BIM technologies and AI towards innovation for the Architecture, Engineering and Construction (AEC) industry.

Thermal Insight: Optimizing Indoor Analysis

Thermal Insight would be a standalone app that optimizes indoor environments by predicting thermal comfort. With simulations from trained models to help enhance occupant comfort and energy efficiency, evaluating metrics like PMV, PPD, and MRT. This tool would help improve well-being and productivity while achieving efficiency goals. Abstract Methodology Use Case Data Analysis Results and … Read more

Predicting optimal layout configurations for sustainable heritage shophouses

Our project aims to determine suitable workstation arrangement for office typology in a conservation shophouse in Singapore through maximise daylight on the worksurface to achieve 300 lux (to a maximum of 3000 lux) for good lighting condition. In a conservation shophouse, where the building envelope and facade cannot be altered. There are two daylight sources … Read more


Project Aim The idea behind the tool is straightforward, that is to hand-sketch louver lines over a facade image to demonstrate the potential reduction in solar radiation on the facade which is linked to a domino effect on the chain of sustainability, as reduction in radiation on the facade will lead to reduction of energy … Read more

Skin Sense

Skin Sense is a project that aims to help users optimize the thermal comfort of their interior spaces by applying skin shaders. Why implement this? What can skin sense help the user with? Once the designer designs the skin for the building facade it has to be analyzed for indoor comfort. To analyze indoor comfort … Read more


1. Introduction 2. Methodology 2a. Dataset Generation To train our machine learning model effectively, we needed a substantial dataset of at least 1.000 data points. However, conducting CFD simulations is notoriously time-consuming, presenting a significant challenge in generating such a large volume of data efficiently. To streamline the dataset generation process, we broke down the … Read more

DF Predictor (cGAN)

DF Predictor aims to revolutionize daylight prediction in architectural design by implementing the conditional generative adversarial network (cGAN) Pix2Pix to predict daylight factors, motivated by the need to improve efficiency and accuracy in daylight analysis. Daylight factor analysis, an integral part of the early design stages and mandated by building codes, is typically lengthy due … Read more


Concept In a world where urban areas are predominantly developed and the heat island effect is intensifying, the construction industry significantly contributes to environmental challenges. Instead of focusing on tools that promote new construction, our goal is to provide a tool that analyzes existing buildings and suggests improvements. This approach aims to enhance sustainability and … Read more

Real-time Daylighting Performance for Adaptive Reuse Planning

This project aimed to develop a daylight predictor to facilitate and generate well-informed adaptive reuse projects, with a specific focus on providing sustainable design solutions for low-income housing. Los Angeles (LA) was selected as a case study due to its proactive open data initiatives and commitment to adaptive reuse. This proposal provides a snapshot of … Read more


Introduction Our project, Materializer, leverages the power of multiple self-trained machine learning models to predict material quantities based on an image uploaded by the user and the building coordinates. This innovative approach utilizes image segmentation to isolate buildings, image classification to read material pixels, and a height prediction model for buildings lacking height information in … Read more