The MAA is a visionary master program with an innovative and open structure, mixing diverse disciplines, shaping professionals capable of producing theoretical & practical solutions towards responsive cities, architecture & technology.


Filters
Course

Growth on butterfly wings.

The wings of a butterfly are membranous with veins running longitudinally from the base (where the wings are attached to the thorax) to the outer margins of the wings. The pattern and arrangement of these veins (wing venation) is an important diagnostic tool in the identification of butterflies. It is therefore important to understand the … Read more

AURORA BOREALIS // NORTHERN LIGHTS – A STIMULI

The project aims to simlulate & understand the behaviour behind the Northern Lights – Aurora Borealis. It is an attempt to explore magnetic fields within a domain of charges, strength & decay. The project develops further into simulating the phenomena via means of particle behavior in the Earth’s Atmosphere, dissipating a gradient of colors as … Read more

Fractalization of Tree Branching

Fractals are commonly found within nature. They are self-similar structures, where one aspect of the fractal is identical to the rest. This allows it to be scaled up or down while fitting within itself. Within trees, fractalization is found in the way the branches are grown from each other, always yielding smaller and smaller versions … Read more

BRANCHING BEYOND

L-SYSTEMS IN ARBOREAL FRACTALS FRACTAL GROWTH This project explores the application of Lindenmayer systems (L-systems) for fractal growth simulation within the Grasshopper environment. L-systems provide a powerful framework for modeling complex branching structures observed in nature, such as trees, plants, and coral reefs. Leveraging Grasshopper’s computational design capabilities, we investigate the dynamic generation of fractal … Read more

Spider Web Spinning

The Spider Web Spinning Project seeks to digitally replicate the intricate process of spider web construction. By delving deep into the anatomy, behavior, and environmental conditions influencing web formation, this project aims to unravel the secrets behind nature’s engineering marvel. Spider web formation, known as “web spinning,” is a remarkable feat of engineering mastered by … Read more

Fluid_Dynamics_Rainfall_Simulation

Fluid dynamics is a branch of fluid mechanics that studies the motion and behavior of fluids, which include liquids and gases. It focuses on understanding how fluids respond to different forces, pressures, and environmental conditions. This field is fundamental to various scientific and engineering applications, ranging from the study of natural phenomena like atmospheric and … Read more

MYCELIUM NETWORKS

Abstract Computational Approach to Understanding Growth of Mycelium INTRODUCTION LIFE PROCESS UNDERSTANDING GROWTH UNDERSTANDING PARAMETERS OF INFLUENCE DECONSTRUCTING THE PHENOMENON SINGLE BRANCHING SYSTEM – APPROACH 01 PERFORMANCE SINGLE BRANCHING SYSTEM _SHORTEST WALK Within an environment mimicking soil conditions, the organism’s spore point discerns optimal targets such as moisture, nutrients, light, and temperature.  Through this sensory … Read more

Tensile Structure

Reproduce parametrically Nature’s Behaviors Introduction This project delves into the parametric design of tensile structures, inspired by nature’s efficiency and adaptability. Through Grasshopper, we investigate factors like load, scale, segment count, multiplication, perforations, and vertical member adjustability to optimize tensile structures’ performance. We simulate structures under various loads and considering gravity. By fine-tuning parameters, such … Read more

CoHabitat

Fostering social interaction and ecological harmony Context Analysis Concept CoHabitat is a dynamic, multifunctional pavilion designed to foster social interaction and ecological harmony. It offers students and faculty a space to socialize and collaborate outside the traditional classroom setting, while also providing nesting grounds for local bird species and promoting biodiversity in the city. The … Read more

SMOKE

SMOKE is a simple exploration of a plume of smoke rising from a camp fire. The project explores thermal turbulence and swarm behavior, with forces from mixing air acting on the particles found in smoke, dispersing them into the air. Deconstructing Natural Behavior: Smoke – Swarm Behavior Smoke is comprised of a collection of tiny … Read more

Golden Gusts

What is the Golden Ratio? The Golden Ratio is a relationship between two numbers that are next to each other in the Fibonacci sequence. When you divide the larger one by the smaller one, the answer is something close to Phi. The further you go along the Fibonacci Sequence, the closer the answers get to … Read more

CORAL ECOSYSTEM

circulatory system Chemical Equation Flow & Diffusion(Peclet number formula) Flow Simulation Coral Section Diffusion Simulation Growth Monitor wave Simulation Influence of Waves others Influence factors(Next step) The survival of corals is currently influenced and challenged by various factors, leading to the gradual disappearance of this ancient ecosystem. In order to simulate both favorable and adverse … Read more

Studies on Fractal Growth – Computational Desing II

The term “fractal” was coined by the mathematician Benoît Mandelbrot in 1975. Mandelbrot based it on the Latin fr?ctus, meaning “broken” or “fractured”, and used it to extend the concept of theoretical fractional dimensions to geometric patterns in nature In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually … Read more

“Cloud” An Exploration of Humane Architecture

Hostile architecture is an urban-design strategy that uses elements of the built environment to purposefully guide or restrict behavior. What if we stopped seeing cities as a place for only the privileged and started thinking of them as living organisms to host the less fortunate? Shifting away from hostile architecture and creating humane zones for … Read more